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Abstract

Few studies have examined the impact of mosquito adulticides on honey bees under condi-
tions that reflect actual field exposure. Whereas several studies have evaluated the toxicity
of mosquito control products on honey bees, most have been laboratory based and have
focused solely on acute mortality as a measure of impact. The goal of this study was to deter-
mine effects of routine applications of truck-based ultra-low volume (ULV) mosquito adulti-
cides (i.e., Scourge, Duet, and Deltagard) on honey bees in a suburban setting. The
mosquito adulticides used in this study were pyrethroids with active ingredients resmethrin
(Scourge), prallethrin and sumithrin (Duet), and deltamethrin (Deltagard), in which resmeth-
rin, prallethrin, and sumithrin were synergized with piperonyl butoxide. We measured and
compared mortality and detoxification enzyme activities (esterase and glutathione S-transfer-
ase) from sentinel beehives within and outside of mosquito control areas. Concurrently, col-
ony health (i.e., number of adult bees, brood quantity and brood quality) was compared
throughout the study period. No significant differences were observed in honey bee mortality,
colony health or detoxification enzyme activities between treated (five sprayed areas each
received one to three insecticide treatment) and control sites (four unsprayed areas that did
not receive insecticide treatment) over the seven week study period. However, our laboratory
study showed that exposure to resmethrin, the active ingredient in Scourge, caused signifi-
cant inhibition of esterase activity compared with the control group. Our findings suggest that
proper application of truck based insecticides for mosquito control results in little or no expo-
sure and therefore minimal effects on domestic honey bees.

Introduction

Recent increased loss of managed honey bees, Apis mellifera L [1], has raised concern regard-
ing potential causes. Whereas it is likely that there are multiple factors associated with colony
losses, pesticides have been shown to affect several parameters of honey bee health [2-5].
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Although effects of agricultural pesticides on honey bees are fairly well-studied, there have
been few reports evaluating non-target effects of public health pesticides on honey bees [6-8].

Among several approaches to managing mosquitoes, chemical control is the most efficient
measure adopted by mosquito control professionals when there is high risk of mosquito nui-
sance and arbovirus prevalence. The use of Ultra Low Volume (ULV) mosquito adulticides is
common in urban areas because judiciously applied chemicals are highly effective in control-
ling mosquitoes while having little impact on non-target organisms [9]. The improper applica-
tion of mosquito adulticides can result in acute honey bee mortality, but most studies have
shown minimal impacts when applications are made at the label rate during night time when
honey bees are within the hive [10-12]. Most research on the effect of mosquito adulticides on
honey bees has focused on acute mortality following exposure of caged bees to insecticides
[13,14]. Although acute mortality is an important indicator of pesticide exposure, other,
chronic and sublethal effects on colony health should also be evaluated [15-17]. In addition,
most studies have not utilized field realistic scenarios with respect to foraging patterns of bees
or actual field exposure to insecticides.

Activities of detoxification enzymes have been evaluated as biomarkers for insecticide expo-
sure in honey bees and other insects [18-20]. Esterases and glutathione S-transferases (GST')
are enzymes used by insects to detoxify insecticides [21-23]. Esterases detoxify many organo-
phosphate and pyrethroid insecticides (some of which are used as mosquito adulticides) by
hydrolyzing the ester moieties and making products that are more hydrophilic and less toxic
[24]. Similarly, GSTs detoxify xenobiotics (including some insecticides) by accelerating the
reaction between reduced glutathione and electrophilic centers, creating products with
decreased lipophilicity and toxicity [25,26]. GSTs also play a role in antioxidant defense and
ameliorate effects of oxidative stress from exposure to insecticides [27]. Exposure to xenobiot-
ics including insecticides alter the detoxifying enzyme activities both by induction and inhibi-
tion [28]. We hypothesize that insecticides exposure would decrease the esterase and GST's
activities in honey bees in our study Activities of these enzymes have been measured in
response to exposure of honey bees to insecticides [18,29], but to date, have not been evaluated
as biomarkers for exposure to mosquito adulticides.

The main goal of this study was to examine the effects of truck based ULV mosquito adulti-
cides on acute mortality, colony populations, and detoxification enzymes of honey bees in a
field setting. The utility of measuring esterase and GST activities as indicators of exposure to
pyrethroid insecticide was validated in the laboratory, and examined in the field setting. In
addition, acute mortality and colony health following insecticide exposure were measured
weekly at field sites receiving routine ULV sprays for seven weeks and compared with
unsprayed sites. Results from this study can help improve best management practices for mos-
quito control to reduce impact to non-target organisms, such as honey bees.

Materials and methods
Ethics statement

No specific permits were required for the field studies, and all work in the field was done with
homeowner consent. These studies did not involve endangered or protected species.

Chemicals

Sodium phosphate monobasic monohydrate (>98%), sodium phosphate dibasic heptahydrate
(98%), Brilliant Blue G-250 (ultra pure), dimethyl sulfoxide (>99%), Fast Blue B salt (approx.
95%), L-glutathione, reduced (>98%), 1-naphthyl acetate (¢ NA) (>98%), 1 chloro 2,-4 dini-
trobenzene (CDNB, 98%), and resmethrin (analytical standard, 99.4%) were purchased from
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Sigma Aldrich (St. Louis, MO). Phosphoric acid (85%), hydrochloric acid (99.7%), sodium
dodecyl sulfate (SDS) (99%), and sodium hydroxide (ACS grade) were purchased from Fisher
Scientific (Kansas City, MO). Bovine serum albumin (biotechnology grade) and acetone (ACS
grade) were purchased from Amresco (Solon, OH). Ethyl alcohol (absolute; ACS/USP grade)
was purchased from Pharmco-Aaper (Brookfield, CT).

Field experimental sites

The experimental sites were selected with the coordination of the Louisiana Beekeepers Asso-
ciation, Capitol Area Beekeepers Association and the East Baton Rouge Mosquito Abatement
and Rodent Control District (EBRMARC), (Baton Rouge, LA; Fig 1). Local beekeepers volun-
teered the use of their colonies for this study. Five sites that were routinely sprayed with mos-
quito adulticides were designated treated sites, and four sites that were never sprayed were
designated control sites. Three colonies were used at each experimental site, for a total of 12
control and 15 treatment colonies. However, two colonies at one of the control sites (site 6)
were excluded from data analysis because both adults and brood were completely absent (for
unknown reason) at the end of the study. The study was conducted over a seven-week period
from 7 August to 25 September 2015. This time period was selected due to the high spraying
frequency for mosquito control during this part of the year.

Insecticides sprayed in the field

At each of the five treatment sites, ULV applications of pyrethroid insecticides were made just
after sunset (between 7:00 pm to 10:00 pm) in response to local mosquito control needs

, A \ ([l.'n’ngx(on l’nn’.zh
&;/ f i_ {\/—’

Fig 1. Experimental sites used for study. Blue circles represent control sites and orange circles represent treatment
sites (ArcMap 10.2; ESR1).

https://doi.org/10.1371/journal.pone.0193535.g001
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Table 1. Spray history at treated sites.

Spray date Site Chemicals used Application Rate
(2015)
Aug. 20 3,4and | Duet a) Deltagard = 0.00045 Ib/acre of deltamethrin

7 b) Scourge = 0.002 Ib/acre of resmethrin and 0.0059 lb/acre
Aug. 31 3and7 | Scourge and Deltagard | Piperonyl butoxide (PBO)

¢) Duet = 0.00036

Sep. 1 2 Scourge Ib/acre prallethrin, 0.0018 Ib/acre sumithrin, and 0.0018 Ib/acre
Sep.11 2 Scourge piperonyl butoxide (PBO)
Sep. 14 8 Scourge
Sep. 15 3,4 and | Duet, Scourge, and

7 Deltagard
Sep. 21 2 Scourge

https://doi.org/10.1371/journal.pone.0193535.t001

(Table 1). These treatments were administered by EBRMARC personnel using a truck mounted,
ULV sprayer. At each location, insecticide droplets were collected using two Teflon coated slides
(26mm x 76mm) mounted on spinners (Leading Edge, Fletcher, NC) placed at 15.2 m and 30.5
m from the roads where sprays originated. Spinners were mounted 0.3 m above the ground.
One or two spinners were also set near the experimental hives, which were at the distances of 56
m to 253 m (average 117 m; control sites) and 44 m to 92 m (average 62 m; treated sites) from
the point of spray. Sites at which all hives were equidistant from the road had one spinner near
the hives, whereas those not equidistant had two spinners. Spinners were fixed at least 2 hours
before an insecticide application. All slides were collected from sites in the early morning after
the application. In preliminary tests, we found no difference in volume of droplets (measured as
Volume Mean Diameter; VMD) between the slides collected at 2 hours and 12 hours post spray.
Control spinners were set using similar methods, at locations not receiving mosquito control.

Insecticide droplets were analyzed at EBRMARC using Drop Vision software (Version 2.4,
Leading Edge). The number and diameter of droplets were calculated by making thirty mea-
surements per slide, which typically resulted in over 200 droplets per slide at our treated sites.
Droplets were also measured from slides at sites that were not sprayed (control). Typically
control slides contained less than 30 droplets per slide. Volume Mean Diameter (VMD) was
measured to one micron using the Drop Vision software. In order to account for other envi-
ronmental droplets such as morning dew on the slides, we adjusted all droplet data to a stan-
dard area (200 sq. cm). Frequency of treatment droplets was then calculated by subtracting the
number of control droplets for each droplet diameter. The frequency was then multiplied by
the diameter size to determine a volume. This was then divided by the total volume on the cor-
rected treatment slide. The VMD was then calculated as the droplet diameter in which 50% of
the cumulative volume was reached. These measurements are generally made in an attempt to
verify that insecticide is reaching the target insects and their habitat [9]. This method is often
used in mosquito control program during ULV spraying [30]. Our assumption is that dramatic
difference measured in droplets between control and treated sites was due to insecticide depo-
sition. However, insecticides residues were not analyzed.

Acute bee mortality

Estimates of adult bee mortality were based on collection from a dead bee trap, which was
designed for this study (Figure in S1 Appendix). This trap, designated the MHH trap, was
modified from designs described by Hendrkisma and Hatrel [31]. Dead bee traps were fixed
onto all experimental hives a week prior to the study in order to acclimatize the bees, then
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dead bees from each colony were collected and counted weekly throughout the seven weeks of
the experimental period. The MHH traps were emptied and cleaned after each collection
period.

Colony health

Colony health was assessed in treated and control colonies at the beginning and end of the
study period. Parameters used to measure colony health were number of adult bees, brood
quantity, and brood quality. Brood quantity reflects the overall health and productivity of a
colony through the measure of colony strength (population), whereas brood quality represents
the status of queen health (inbreeding between queen and her mates, the susceptibility of col-
ony to brood diseases) [32]. Estimates of these parameters were made by a single observer
(VP) to minimize the error from individual bias throughout the study. Numbers of adult bees
were calculated using methods described by Burgett and Burikam [33], in which number of
adults on both sides of individual combs were estimated. Similarly, brood quantity was mea-
sured by determining the surface area covered by capped brood on both sides of each frame in
the hives [32]. Percentage area covered by capped brood was converted into the area of brood
in square centimeters, to correct for the difference in frame sizes. For measurement of brood
quality, a rhombus-shaped plastic grid (measured as 10 by 10 honey bee cells) was used. The
grid was placed on selected frames with large patches of capped brood, and the number of
empty cells was recorded and expressed as an average of three measurements per hive.

Enzyme activities in adult honey bees

In order to compare enzyme activity between treated and control sites, an average of ten live
forager bees was collected randomly from each experimental hive weekly from August 7 to
September 26, 2015. In addition, ten forager bees were collected randomly from the treated
sites immediately before (pre-spray) and within 12 hours after (post-spray) a mosquito control
application. All bees were transferred within hours to the laboratory in an ice-filled cooler, and
kept in a -80°C freezer until enzyme assays.

To validate use of esterase and GST activities as biomarkers for insecticide exposure, adult
bees were treated with a sublethal dose of resmethrin in the laboratory. Ten foragers of mixed
age were collected from a colony that was maintained at Louisiana State University, and were
placed into 475-ml wax-paper cups that were covered with nylon tulle that was secured with a
rubber band. Individual bees from three replicate cups were CO2 anesthetized and treated top-
ically on the thoracic dorsum with 1 pl of resmethrin solution (in acetone; 0.013 pg resmeth-
rin/bee) using a 50-ul syringe with a mechanical repeating dispenser (Hamilton Company,
Reno, NV). The dose used for this study was determined from preliminary bioassays in which
mortality was < 2%. Control bees were handled the same as the treated bees except they were
treated with 1 pl of acetone only. All bees were kept in an incubator (33°C with 75% humidity)
for 12 hrs and provided with 50% sucrose solution. After 12 hrs. bees were removed and placed
in a -85°C freezer for 24 hours. After 24 hours, bees were thawed and used immediately for
biochemical studies.

Measurement of detoxifying enzyme activities

Abdomens were removed from frozen bees and homogenized in 0.1 M sodium phosphate
buffer (pH 7.4; 1 bee/500 pl) using 10 strokes of an all glass homogenizer. Homogenates were
centrifuged at 4°C for 10 min at 14,600 rpm. Resulting supernatants were held in ice and
diluted two-fold with buffer to adjust protein for enzyme assays. Preliminary assays were used
to optimize pH and protein concentration (data not shown).
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Activities of esterase towards alpha naphthyl acetate (a®NA) were measured using the
method of Gomori [34] as modified by van Asperen [35] and Grant [36] in polystyrene
96-well flat bottom microplates (Costar, Cambridge, MA). All microplates were prewashed
with 2.5% Tween 20 (v/v in water). A stock solution of @NA (30 mM) in acetone was diluted
in buffer to a concentration of 0.3 mM. Reactions, containing 20 pl of either enzyme homoge-
nate (0.02 insect equivalent; 0.0044 mg protein) or buffer, were started by adding 200 ul of
oNA (0.27 mM, final concentration). After 10 mins at 27°C, reactions were terminated by
addition of 50 yl of Fast Blue B dye (0.15 gm Fast Blue B salt + 14 ml distilled water + 30 ml 5%
SDS solution; 2.18 mM final concentration). Reactions with buffer only were used as control.
Optical density of reactions, measured at 570 nm using a Thermomax microplate reader
(Molecular Devices, Palo Alto, CA), was converted to umol/min using an experimentally
derived extinction coefficient of 0.0235 uM ™ 250 ul for alpha naphthol.

Activities of GST towards 1-chloro-2,4-dinitrobenzene (CDNB) were measured following
the method of Booth et al. [25] and Jakoby [37], as modified by Grant et al. [36]. A stock solu-
tion of CDNB (50 mM in DMSO) was diluted in buffer to a concentration of 0.66 mM. Gluta-
thione (65 mM) was prepared in 0.1 M sodium phosphate buffer, pH 7.4. A typical reaction
mixture consisted of 20 pl of enzyme homogenates (0.02 insect equivalent; 0.0044 mg protein)
or buffer (control), 30 ul of glutathione (7.8 mM final concentration) and 200 ul of CDNB
(0.53 mM final concentration). Rate of change in optical density was measured for 10 mins at
340 nm using a Thermomax microplate reader (Molecular Devices, Palo Alto, CA) and first
order reaction rates were converted to pmol/min using the experimentally derived extinction
coefficient of 8.39 mM ™ 250 pl for conjugated CDNB [36]. Protein concentrations were mea-
sured using the method of Bradford [38], using bovine serum albumin as the standard.

Statistics

The number of dead bees collected was converted into percentage mortality of the estimated
total numbers of bees in the colony followed by arcsine transformation of percentage data.
The Proc Mixed one way Analysis of Variance (SAS Institute, Cary, NC, 2013) was used to
compare the percentage of dead bees between treated and control colonies. Means were com-
pared at o < 0.05 by Tukey’s Honest Significant Difference test.

Number of adult bees, brood quantity and brood quality were converted into percentage
changes with the general formula (% change = (initial reading-final reading)/ initial read-
ing x 100) and subsequently percentage data were arcsine transformed. Proc t-test (SAS insti-
tute, Cary, NC, 2013) was used to compare the percentage change in number of adult bees and
brood quality between control and treatment colonies during the experimental periods. Due
to non-normal distribution of brood quantity data, Mann Whitney’s test was used to compare
the percentage change in brood quantity between control and treatment colonies.

Proc Glimmix Repeated Anova (SAS institute, Cary, NC, 2013) was used to analyze differ-
ences in enzyme activities between two treatments. Tukey-Kramer (P < 0.05) method was
used to compare enzyme activities between before and after mosquito control applications.

Results
Effects of insecticide sprays on honey bee mortality and colony health

No significant effect on acute honey bee mortality was observed from the routine spray of
insecticides by mosquito control program despite apparent exposure of experimental hives
to the insecticides sprayed. Based upon deposition of insecticide droplets, exposure at the
experimental hives was similar between 50 m and 100 m from the road (Fig 2), with average
DV50 values for Scourge™, Deltaguard™, and Duet™ of 12.59, 10.33, and 11.81 microns,
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Fig 2. Insecticide droplet size measured from treated sites at different distances from point of release of
insecticides from spray truck and at experimental hives. Bars represent mean droplet size, expressed as diameter in
mean volume (DV5,) based on 3 determinations replicated 3 times. ND = not determined.

https://doi.org/10.1371/journal.pone.0193535.9002

respectively. The droplet sizes were in the optimum range used in mosquito control [30]. Bee
mortality, averaged from weekly collections from dead bee traps, was low (<0.33%) for the
four untreated (0.33% + 0.13) and five treated (0.22% = 0.11) sites, and was not significantly
different between these treatment groups (F;, 65 = 0.51; p = 0.498; Table 2). Although bee mor-
tality varied among the nine experimental sites (ranging from 0.06 to 0.73%), differences were
not statistically significant between any two of the individual sites. Similarly, mortality did not
differ significantly from week to week (Fg, 133 = 1.71; P = 0.124) among bees from control and
treated colonies (data not shown). Further, numbers of adult bees declined from the beginning
to the end of the seven week study period at both control (7.36%) and treated (4.18%) sites,
but these decreases were not statistically significant (T, = -0.14; P = 0.886; Table 2). Finally,
there was no significant difference (Fg ¢ = 1.66; P = 0.998) in the percentage change in brood
quality between treated and control colonies (Table 2). However, there was a significant
increase (Uys, 135 = 20; P = 0.034) in brood quantity in both treated and control colonies dur-
ing the seven-week test (Table 2).

Effect of insecticide exposure on enzyme activities

There was no significant effect on enzyme activities in field exposure to insecticides; however,
esterase activity was inhibited following topical exposure of bees to a sublethal dose of res-
methrin in the laboratory (T4 = 4.45 and P = <0.0001; Table 3). In the laboratory, esterase
activity decreased by 23%, 12 hr after topical treatment with resmethrin (707.4 umole/min*mg

Table 2. Comparison of weekly bee mortality and colony health among insecticide-treated and-untreated sites.

Parameters Mean + SEM Statistical Test P value
Control Treated

Weekly Bee Mortality 0.3+0.1a 0.2+0.1a ANOVA (F;55=0.51) 0.498

% Change in Bee Number -74+t1la -42+17a T test (T, =-0.14 0.886

% Change in Brood Quality 26 + 22a 20 £ 22a T test (T16.9 = 0.0025) 0.998

% Change in Brood Quantity 75+ 10a 135+ 7.3b Mann Whitney’s (U135 = 20) 0.034

Weekly bee mortality (Mean + SEM) was measured throughout the seven week study. Colony health (number of bees, brood quantity, and brood quality) is expressed as
percentage change (Mean + SEM) based on measurements at the beginning and at the end of the seven week study period. Significant differences between treated and

untreated colonies are indicated by different letters.

https://doi.org/10.1371/journal.pone.0193535.t002
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Table 3. Effect of insecticide exposure on enzyme activities in honey bees from laboratory and field studies.

Experiment Treatments n Enzyme Activity
Esterase GST

Laboratory Control 870 + 25a 567 + 24a

Resmethrin -treated 707 + 26b (-18.74%) 543 + 26a (-4.23%)
Field Unsprayed 84 1078 + 58a 959 + 48a

Sprayed 105 1057 + 51a (-1.95%) 970 + 43a (+1.15%)

Pre spray 60 1112 + 39a 934 + 20a

Post spray 60 1093 + 36a (-1.71%) 931 + 22a (-0.32%)

Mean activities expressed as pmole/min* mg protein for esterase and pmole/min* mg protein for GST are based on determinations (n) made from individual bees. For

the laboratory study, determinations represent mean activities from 10 individual bees assayed on three different days. For the field experiment, determinations were

made from groups of 10 individual bees collected weekly from colonies at sprayed or unsprayed sites, or from groups of 10 bees collected 2-3 hours prior (pre-spray) or

10-12 hours after (post spray) an insecticide application. Increase and reduction in enzyme activities compared with control are represented in parenthesis. Positive and

negative signs in parenthesis denote increase and decrease in enzyme activity respectively. Significant difference is indicated by different letters within the treatments

(P<0.05).

https://doi.org/10.1371/journal.pone.0193535.t003

protein) compared with the control group that was treated with acetone (870.4 umole/min*mg
protein). However, there was no statistically significant difference in GST activities between
control and treated groups. In contrast, in the field study, there were no significant effects of
insecticide sprays (including resmethrin) on activities of either esterase or GST at control and
treated sites (F ; ; = 0.08 and P = 0.7902 for esterase activity; F ; ; = 0.05 and P = 0.8309 for
GST; Table 3). Further, enzyme activities did not differ when measured 2-3 hours before or
10-12 hours after a mosquito control application (Table 3) at the treatment sites (|T| 190 =
-0.21 and P = 0.3075 for esterase activity; | T| 190 = 0.7; P = 0.4827 for GST activity). In addi-
tion, when sites were analyzed individually, enzyme activities were similar among control and
insecticide-treated sites: there were no significant differences in esterase activities among indi-
vidual sites (Fig 3) except for site 1 (a control site; 1300 umole/min*mg protein) and site 4 (a
treated site; 913.0 pmole/min*mg protein). Similarly, there were no significant differences in
GST activities among individual sites (Fig 4) except for site 9 (a control site). For both esterases
and GSTs, activities were similar among individual control and treated sites during the seven-

1400
B Untreated M Insecticide-treated

1000 ’ :
800
600
400
200
0

1 2 3 4 5 6 1 8 9

Experimental sites

J

Esterase activity
(umole/min*mg protein)

Fig 3. Esterase activity from bees collected during a seven week period from insecticide-treated (orange bars) or-
untreated (blue bars) sites. Bars represent mean activities (umole/min*mg protein; + SEM) based on triplicate assays
made from 10 bees collected weekly at 3 colonies from each treated or untreated site. Asterisks signify mean values that
are significantly different (P<0.05).

https://doi.org/10.1371/journal.pone.0193535.g003
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Fig 4. GST activity from bees collected during seven week period from insecticide-treated (orange bars) or-
untreated (blue bars) sites. Bars represent mean activities (pmole/min*mg protein; + SEM) based on triplicate assays
made from 10 bees collected weekly at 3 colonies from each treated or untreated site. Asterisks signify mean values that
are significantly different (P<0.05).

https://doi.org/10.1371/journal.pone.0193535.g004

week period of the study. Esterase activities peaked at week 2, decreased to week 5, then
remained relatively constant through week 7 (Fig 5). Similarly, GST activity also peaked at
week 2, declined by week 5, and then remained constant through week 7 (Fig 6). Protein con-
tent did not differ (P = 0.213) during the seven-week study for bees in the two treatment
groups (4.06 pg/assay for control and 3.96 pg/assay for treated colonies).

Discussion

We measured effects of insecticide exposure from urban mosquito abatement efforts on man-
aged honey bee colonies during the most active period of annual spraying. Whereas insecticide
exposure of hives was documented, there were no significant effects of these sprays on bee
mortality. Throughout the course of our study, we typically saw between 25 to 120 dead bees
per colony per week, which is considered natural mortality in bee colonies [39]. A similar
study found no effect of aerial spraying of pyrethrin synergized with piperonyl butoxide on
mortality of sentinel urban bee colonies in California [6]. Similarly, a semi-field study assessing
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Fig 5. Esterase activity from bees collected weekly from five insecticide-treated (orange line) or-untreated (blue
line) sites. Points represent mean activities (umole/min*mg protein; + SEM) from triplicate assays of 10 bees collected
from 3 colonies from each treated or control site.

https://doi.org/10.1371/journal.pone.0193535.g005
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Fig 6. GST activity from bees collected weekly from five insecticide-treated (orange line) or-untreated (blue line)
sites. Points represent mean activities (pmole/min*mg protein; + SEM) from triplicate assays of 10 bees collected from
3 colonies from each treated or control site.

https://doi.org/10.1371/journal.pone.0193535.9006

the impact of truck-based ULV mosquito adulticide applications on honey bees found mini-
mal bee mortality compared to mosquito mortality [40].

In addition to overall weekly mortality, we found few differences in colony health parame-
ters between treated and control sites from the beginning to the end of our study. Whereas we
did observe a decrease in the numbers of adult bees in colonies at both treated and control
sites, that difference was not statistically significant. It is likely that the small decrease in num-
ber of adult bees may be due to the poor resources available for bees during August and Sep-
tember, when the test was conducted. This finding supports previous studies that showed
minimal effects of ground applied, ULV sprays of mosquito adulticides in either open or for-
ested areas [11]. Similarly, brood quality increased during the seven week study but did not
differ significantly among treated and control sites. This supports results from a previous
study [41] in which night time aerial application of the pyrethroids, phenothrin and deltame-
thrin, had no significant effect on number of adults or brood, or weight of hives in domesti-
cated honey bee colonies. However, in the current study, brood quantity was significantly
higher in treated sites (Table 2), but this finding is strongly influenced by two insecticide-
exposed colonies (site 2) that had relatively low bee brood populations intially that increased
dramatically during the study, so it may not be due to insecticides exposure on the bees.

The inhibition of esterase activity (Table 3) following exposure to a sublethal dose of res-
methrin suggests that esterases might be a suitable biomarker of pyrethroid exposure in honey
bees. Previous laboratory studies have validated use of esterases as biomarkers for exposure to
insecticides (i.e., thiamethoxam and deltametrhin) in honey bee [18,19,42]. Our results sup-
port those from a previous laboratory study in which carboxylesterase (CaE-1) activity de-
creased after treatment with a sublethal dose of deltamethrin on honey bees [43]. Conversely,
the lack of inhibition on GST activity following exposure to a maximum sublethal dose of res-
methrin in the laboratory suggests that GST may not be a suitable biomarker for pyrethroid
exposure, a finding that is in agreement with those from an earlier study [43]. Although res-
methrin exposure appears to affect esterase activity, no effect of insecticides on esterase or GST
activities was measured in our field study, suggesting that although insecticide residues existed
at treated sites (based on recovery of droplets), it is likely that bees were not exposed to them
and consequently no significant effect on esterase activities were detected.

In conclusion, minimizing exposure is likely the most important factor that reduces the
effects of insecticide applications on honey bees. The mosquito control applications in this
study followed label regulations, were conducted between 7:00 pm and 10:00 pm, and utilized
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properly calibrated equipment [44] Previous researchers have observed higher bee mortality
from ground based ULV malathion applications made durng the daytime, whereas night-time
applications had no measurable effects on bee mortality [10]. During a night-time application
of mosquito adulticides, bees are completely (or mostly) inside the hive, which reduces both
exposure to insecticides and acute mortality [45]. However, during hot summer nights, bees
may cluster outside the entrance of hives to help increase ventilation. While beekeepers can
improve ventilation in hives, this “bearding” behavior may increase the pesticide exposure to
those individuals [46]. Additionally, the use of modern spray systems minimizes contamination
of the environment, and adoption of high-pressure nozzles has been shown to decrease mortal-
ity of bees by more than half [8]. Finally, the laboratory component of the current study vali-
dated the use of esterases (but not GST) as a biomarker of pyrethoid exposure in honey bees.
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